

Binary Arithmetic & Signed Numbers

Computer Science Department

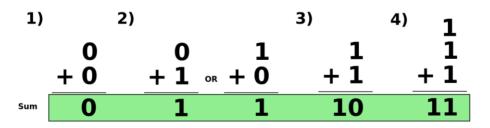
Outline

- Adding Binary Numbers
- Signed Numbers
- Subtracting with Signed Numbers

Adding Binary Numbers

Binary Addition

Binary Addition Rules for Two Numbers



All values are expressed in binary.

Three 1's will occur during a carry operation.

Binary Addition - Example

01111+00110 =

Binary Addition

11010011+01010110=

Adding Binary Fractions

Adding Binary Fractions

1. First, we align the two numbers so that the radix point of each number is located in the same column.	110.01 + 1.011
2. Next, we fill in the blank spaces with 0s and add the two numbers together.	110.010 + 001.011
3. The first column adds to 1.	110.010 + 001.011 1
4. The second column adds to 10_2 , so we write a 0 below it and carry a 1 to the next column.	1 110.010 + 001.011 01
5. All of the remaining columns add to 1, so we write 1 below them.	1 110.010 + 001.011 111.101
6. This gives us a final answer of 111.101 ₂ .	1 110.010 + 001.011 111.101

Bits carry across the radix point

Add 10.1b + 10.1b.

```
1 <--- Carry bit
10.1b
+ 10.1b
-----
101.0b
```

Verify that 10.1b + 10.1b equals 101.0b.

$$10.1b = 2.5d$$

Signed Numbers

Signed Numbers

Until now, we have only considered positive numbers in our study of binary arithmetic

What about negative numbers?

Representing numbers(integers)

Fixed, finite number of bits.

<u>Bits</u>	bytes	C/C++	Intel	Sun
8	1	char	[s]byte	byte
16	2	short	[s]word	half
32	4	int or long	[s]dword	word
64	8	long long	[s]qword	xword

Representing numbers (integers)

Fixed, finite number of bits.

signed	unsigned
$-2^{7}+2^{7}-1$	$0+2^{8}-1 (2^{8}=256)$
-2 ¹⁵ + 2 ¹⁵ -1	$0+2^{16}-1$ ($2^{16}=65,536$)
-2 ³¹ + 2 ³¹ -1	$0+2^{32}-1$ ($2^{32}=4,294,967,296$)
-2 ⁶³ + 2 ⁶³ -1	0+2 ⁶⁴ -1
	(2 ⁶⁴ =18,446,744,073,709,551,616)
	-2 ⁷ + 2 ⁷ -1 -2 ¹⁵ + 2 ¹⁵ -1 -2 ³¹ + 2 ³¹ -1

In general, for k bits, the unsigned range is $[0..+2^k-1]$ and the signed range is $[-2^{k-1}..+2^{k-1}-1]$.

Signed Numbers

Example:

$$(5)_{10} = (101)_{2}$$

Positive 5 is 0 1 0 1
Negative 5 is 1 1 0 1

<u>The Problem</u>: We need to specify how many bits in our numbers so we can be certain which bit is representing the sign!!!

Methods for representing signed integers.

- 1. Signed Magnitude
- 2. 1's Complement
- 3. 2's Complement

Signed Numbers

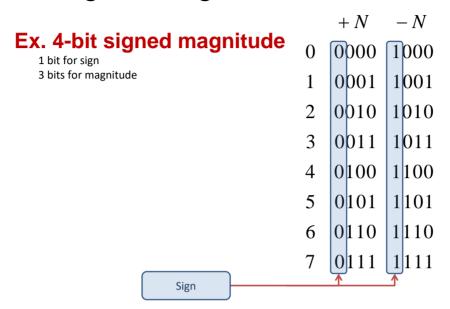
> Signed Magnitude

add an <u>extra digit</u> to the front of our binary number to indicate whether the number is positive or negative.

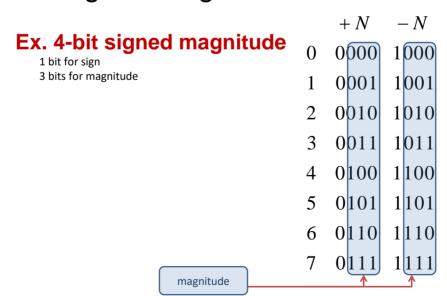
this digit called sign bit.

- o for positive
- 1 for negative

Signed Magnitude



Signed Magnitude



Signed Numbers

1 101 is 13 or -5

One's Complement

Representing a signed number with 1's Complement is done by changing all the bits that are 1 to 0 and all bits that are 0 to 1.

Signed Numbers - Examples

□Represent -5 in 1's complement by using 4-bit arithmetic?

0101 → 1010

□Represent -1 in 1's complement? $0001 \rightarrow 1110$

1's complement (Alternative def.)

Let x be a non-negative number. Then -x is represented by b^D-1+(-x), where

b = base

D = (total) # of bits (including the sign bit)

Example: Let b=2 and D=4.

Then -1 is represented by 2^4 -1-1 = 14_{10} or 1110_2 . -5 is represented by 2^4 -1-5 = 10_{10} or 1010_2 .

4-bit binary numbers in 1's complement

notation

All of the negative values begin with a 1

- · Here MSB always tells us the sign of
- · the number
- 2 ways of representing the number zero.
- Rule(we already know):

If *x* is positive, simply convert *x* to binary. If *x* is negative, write the positive value of *x* in binary

Reverse each bit.

Binary	Decimal
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1111	-0
1110	-1
1101	-2
1100	-3
1011	-4
1010	-5
1001	-6
1000	-7

Signed Numbers

> Two's Complement

$$2's comp = (1'comp) + 1$$

□ Represent -5 in 2's complement by using 4-bit arithmetic?

4-bit binary numbers in Two's Complement

Notation

- · Most significant bit to represent the sign.
- We only have one way to represent 0 in 2's complement.

Rule:

If *x* is positive, simply convert *x* to binary.

If x is negative, write the positive value of x in binary Reverse each bit.

Add 1 to the complemented number.

Binary	Decimal
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

Two's Complement

Problems with sign-magnitude and 1's complement

- 1. two representations of zero (+0 and −0)
- arithmetic circuits are complex
 How to add two sign-magnitude numbers?
 e.g., try 2 + (-3)
 How to add two one's complement numbers?
 e.g., try 4 + (-3)

Two's complement representation developed to make circuits easy for arithmetic.

for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

- **00101** (5)
- **+ 11011** (-5)
 - 00000 (0)

2's Complement Addition

- Easy
- No special rules
- Just add

Subtraction with Signed Numbers

What is -5 plus +5?

Zero, of course, but let's see

Sign-magnitude

8......8.........

-5: 10000101 +5: +00000101 10001010

Twos-complement

11111111 -5: 11111011 +5: +00000101 00000000

Subtracting with Signed Numbers

- Convert our subtraction problems to addition
- Example: subtracting 1₁₀ from 7₁₀.
- Solution:
 - 1. Convert 1_{10} to -1_{10} with either 1's or 2's complementation.
 - 2. Add -1_{10} to 7_{10} .
 - 3. Adjust our answer:
- If sum in step 2 exceeds the number of bits in our representation, then we have overflow
- We handle the extra bit differently in 1's and 2's complement.
- In 1's complement, we add the overflow bit to our sum to obtain the final answer.
- <u>In 2's complement</u>, we simply *discard the extra bit* to obtain the final answer.

Subtraction with One's Complement with Overflow

Let's consider how we would solve our problem of subtracting 110 from 710 using 1's complement.

1. First, we need to convert 0001_2 to its negative equivalent in 1's complement.	0111 - 0001	(7) - (1)
2. To do this we change all the 1's to 0's and 0's to 1's. Notice that the most-significant digit is now 1 since the number is negative.	0001 ->	1110
3. Next, we add the negative value we computed to 0111_2 . This gives us a result of 10101_2 .	0111 + 1110 10101	(7) +(-1) (?)
4. Notice that our addition caused an <u>overflow</u> bit. Whenever we have an overflow bit in 1's complement, we add this bit to our sum to get the correct answer. If there is no overflow bit, then we leave the sum as it is.	0101 + 1 0110	(6)
5. This gives us a final answer of 0110_2 (or 6_{10}).	0111 - 0001 0110	(7) - (1) (6)

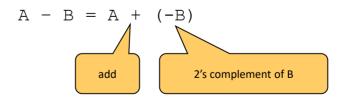
Subtraction with One's Complement without Overflow

Subtract 7₁₀ from 1₁₀ using 1's complement.

1. First, we state our problem in binary.	0001 - 0111	(1) - (7)
2. Next, we convert 0111_2 to its negative equivalent and add this to 0001_2 .	0001 + 1000 1001	(1) +(-7) (?)
3. This time our results does not cause an overflow, so we do not need to adjust the sum. Notice that our final answer is a negative number since it begins with a 1. Remember that our answer is in 1's complement notation so the correct decimal value for our answer is -6_{10} and not 9_{10} .	0001 + 1000 1001	(1) +(-7) (-6)

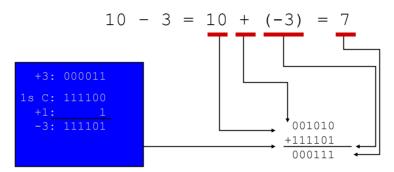
2's Complement Subtraction

- Easy
- No special rules
- Just subtract, well ... actually ... just add!

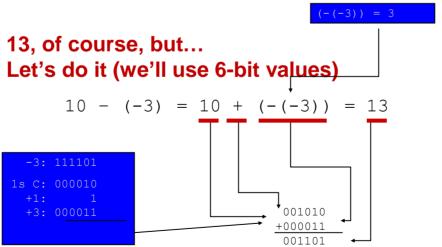


What is 10 subtract 3?

7, of course, but... Let's do it (we'll use 6-bit values)



What is 10 subtract -3?



What is subtracting 1_{10} from 7_{10} ?

Now let's consider how we would solve our problem of subtracting 1₁₀ from 7₁₀ using 2's complement.

1. First, we need to convert 0001 ₂ to its negative equivalent in 2's complement.	0111 - 0001	(7) - (1)
2. To do this we change all the 1's to 0's and 0's to 1's and add one to the number. Notice that the most-significant digit is now 1 since the number is negative.	0001 ->	1110 1 1111
3. Next, we add the negative value we computed to 0111_2 . This gives us a result of 10110_2 .	0111 + 1111 10110	(7) +(-1) (?)
4. Notice that our addition caused an overflow bit. Whenever we have an overflow bit in 2 's complement, we discard the extra bit. This gives us a final answer of 0110_2 (or 6_{10}).	0111 - 0001 0110	(7) - (1) (6)

H.W

Lab 1 . P8,9 Q.1,2,3,4,8,10